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ABSTRACT 

 
Power wheelchair users may present secondary 

impairments that inhibit effective joystick control. 
Accordingly, driving assessments are needed to ensure the 
safety of both the drivers and their surroundings. We 
introduce a quantitative method to evaluate power 
wheelchair driving performance using the Markov decision 
process. Our dynamic, stochastic approach supplements 
previous quantitative evaluations by accounting for 
individual differences between drivers. For example, a 
driver who frequently pulls to the left by accident might stay 
far from the left wall and make extremely wide left turns, 
but these inefficiencies may actually be appropriate given 
the context. We include preliminary results to demonstrate 
this assessment method. 
 

INTRODUCTION 
 

Power wheelchairs provide autonomy and promote self-
reliance in people with severe mobility impairments. In 
1995, powered mobility devices were used by an estimated 
291,000 Americans and exhibited growth trends of 5% per 
year (LaPlante & Kaye, 2010). Based on these projections, 
there could be well over a million powered mobility devices 
in use by 2020. Since power wheelchair users may also 
present accompanying cognitive, sensory, and motor 
impairments, driving assessments are needed to ensure the 
safety of both the drivers and their surroundings. 

Current clinical evaluations are generally qualitative in 
nature. For example, pediatric wheelchairs are prescribed 
based on clinical intuition and “trial and error” (Guerette, 
Tefft, & Furumasu, 2005) or based on assessment batteries, 
such as the Pediatric Powered Wheelchair Screening Test 
(Furumasu, Guerette, & Tefft, 2004). For general power 
wheelchair evaluation, the Wheelchair Skills Test includes a 
series of common driving tasks that are rated by clinicians 
(Kirby, Swuste, Dupuis, MacLeod, & Monroe, 2002). To 
evaluate driving performance more objectively, some 
studies have begun quantifying joystick metrics with 
descriptive statistics: reaction time, total driving time, and 
target accuracy (Dicianno, Spaeth, Cooper, Fitzgerald, & 
Boninger, 2006); movement error, movement variability, 
average speed, and average acceleration (Dicianno, 
Mahajan, Guirand, & Cooper, 2012); and joystick 
activations, total driving time, and joystick directional 
variability (Sorrento, Archambault, Routhier, Dessureault, 
& Boissy, 2011).  

 

 
Figure 1: A comparison of deterministic and 
nondeterministic decisions for reaching the positive block 
while avoiding the negative block. The nondeterministic 
agent chooses a longer path to avoid the narrow corridor and 
to lower the risk hitting the negative block. 
 

However, as a dynamic, stochastic, and nonlinear task 
(Nechyba & Xu, 1997), human driving contains 
complexities that are difficult to express with descriptive 
statistics and ratings. Because driving involves real-time 
adaptation based on both personal skill and environmental 
factors, optimal driving decisions are contingent upon each 
specific individual and the current surroundings. Individual 
differences (e.g., in fine motor skill) inject nondeterminism 
into the driving process. 

To illustrate how this stochastic factor affects optimal 
control decisions, consider a simplified grid environment in 
which the goal at any location is to reach the positive block 
while avoiding the negative block (Figure 1). When a purely 
deterministic agent makes decisions, those decisions always 
yield the expected outcome. For example, if it attempts to 
move forward, it does not have to worry about accidentally 
moving orthogonally to its left or right. This allows the 
deterministic agent to use the shortest path distance to its 
goal. However, when a nondeterministic agent makes 
decisions, those decisions do not always yield the expected 
outcome. In this example, the agent has a high probability of 
moving orthogonally against its intended direction, so it 
avoids the narrow corridor rather than taking the risk of 
accidentally falling into the orange block. Although this 
results in a longer path distance, the nondeterministic agent 
is still making optimal decisions within the context of its 
personal skill and situational environment. In stochastic 
scenarios such as this, the optimal decision always involves 
a careful balance between the movement probabilities and 
movement rewards. This type of stochastic decision 
optimization problem can be formalized as a first-order 
Markov decision process (MDP). 
 



METHODS 
 

The MDP framework (Russell & Norvig, 2009) consists 
of a set of states (e.g., wheelchair positions), set of actions 
(e.g., wheelchair heading vectors), probability distribution 
of movement transitions (e.g., movement uncertainty), and 
reward function (e.g., environmental cues) (Figure 2). These 
components allow us to model the task of driving as a 
sequence of MDP decisions, accounting for differences in 
driving skill and environmental contexts. We then develop 
an individualized performance measure by comparing the 
driver’s actual actions with those computed from the MDP. 
 

 
Figure 2: Power wheelchair driving can be mapped as a 
Markov decision process (MDP), in which the MDP states, 
actions, reward function, and transition probabilities 
correspond respectively to wheelchair positions, heading 
vectors, environmental cues, and driving uncertainty. 
 
Mapping Wheelchair Headings into MDP Actions 

Unlike cars which turn via differential gearing, power 
wheelchairs turn via differential steering (Figure 3), such 
that each wheel’s velocity is explicitly governed. For 
example, the power wheelchair turns to the right by making 
the left wheel rotate faster than the right wheel. To estimate 
the driver’s actions, joystick positions are first mapped into 
wheel velocities (Figure 4) and then converted into heading 
vectors using rigid body mechanics. 
 
Mapping Uncertainty into MDP Transition Probabilities 

Driving is a stochastic process in large part because the 
result of each decision is always uncertain. Intended 
decisions do not perfectly manifest themselves in the 
physical domain, especially for people with impaired fine 
motor control. The transition probabilities represent an 
individualized model for a person’s driving tendencies. For 
this preliminary report, we use a simulated transition model, 
such that the driver is assumed to have an 80% probability 
of completing the intended action (Figure 5). 
 
Mapping Environmental Context into MDP Rewards 

We use the Kinect sensor (Microsoft Corporation, 
Redmond, WA) to sense the environment. The Kinect 
captures color and depth images within a 57° horizontal 
field of view and 4,000 mm radial distance. Based on the 
joystick actions and movement transitions, we model the 
MDP’s states as a 3-branch, 6-depth graph (Figure 6). Each 
branch represents one of the three joystick actions (left, 
middle, right) that can be chosen at a given state 

 

 
Figure 3: In a modern car, differential gears allow its wheels 
to freely adapt to the needed speeds when negotiating turns. 
On the other hand, a power wheelchair’s wheels turn via 
differential steering, such that each wheel’s velocity is 
explicitly governed. 
 

 
Figure 4: An overhead diagram of the joystick. The 
joystick’s Cartesian coordinates were mapped to pairs of 
wheel velocities based on the output voltages. The values 
for , , , , and  were obtained empirically. 
 

 
Figure 5: The transition model used in this study. The 
values represent movement probabilities when attempting to 
move left, forward, and right. 
 

 
Figure 6: An overhead depth image of two obstacles. The 
graph is overlaid on the depth image. All graph nodes of 
obstacles and their children are assigned negative values, 
inversely weighted by the distance from the sensor. 



Optimizing the MDP Policy 
In the MDP framework, decisions can be optimized into 

a policy of actions that maximizes the agent’s expected 
utility using a simplified Bellman equation (Equation 1). 
Optimization of the utility values is performed using 
backward induction (Russell & Norvig, 2009). 
 

 (1) 
Equation 1:  is the utility value for a state ,  is the 
reward for a state , and  is the transition 
probability of reaching state  given the current state  and 
action . 
 
Assessing the Driving Performance 

Although the backward induction algorithm computes a 
utility-optimal policy, there is nothing inherently wrong 
with suboptimal decisions. Mathematically, it simply means 
that the driver can no longer achieve the highest possible 
utility. Practically, the impact could range anywhere from 
negligible to catastrophic. The severity of the deviations can 
be quantified in terms of the resulting expected utility. 

At the root node of each graph, the computed and 
observed actions are compared based on their resulting 
expected utilities. A risk index is calculated by normalizing 
the utility difference against the optimal utility (Equation 2). 
Thus, when the computed and observed actions match, the 
risk index evaluates to zero; otherwise, riskier mismatches 
evaluate to higher values. 
 

 (2) 
Equation 2:  is the risk index at time ,  is the 
utility value of the observed action at the root node at time 
, and  is the utility value of the MDP action at the 

root node at time . 
 

RESULTS 
 

We performed preliminary experiments on a C400 power 
wheelchair (Permobil, Inc., Lebanon, TN). Figure 7 presents 
a selected time series of the calculated risk indices. Sample 
camera images, which have been superimposed with 
computed and observed heading vectors, are shown for both 
high-risk (Figures 8) and low-risk (Figure 9) situations. 
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Figure 7: Risk indices from a sample driving trial. 

 
Time 12.5 s

Computed Observed  
Figure 8: Example of a high risk index (0.59), occurring at 

. 
 

Time 31 s

Computed Observed  
Figure 9: Example of a low risk index (0.01), occurring at 

. 
 

DISCUSSION 
 

We used a simulated transition model that assumed the 
driver to possess a relatively high probability (20%) of 
mistakenly moving to the right or left of each intended 
direction. Figure 8 shows an example of a high-risk 
mismatch between the computed MDP action (move left) 
and the observed action (move forward). For an able-bodied 
driver, the observed action might not be considered risky. 
However, the MDP was provided a simulated model of a 
relatively unpredictable driver, causing the optimization 
algorithm to compute a left action. For such a driver, 
attempting to move straight might accidentally cause the 
driver to move to the right and collide with the extremely 
proximate door. Figure 9 illustrates another mismatch. 
Again, the MDP accounted for the model’s driving 
uncertainty and computed a conservative optimal policy to 
perform a right turn away from the wall. However, the risk 
index was negligible. In this case, the wall was more distant 
than in Figure 8, so the expected utility difference between 
the mismatched actions was lower. These examples 
illustrate the model’s ability to account for both driving 
tendencies and environmental cues. 

Although our reported examples focused on driving 
decisions, the value of individualized driving evaluation 
extends beyond the explicit path decisions. For example, a 
driver may actually be executing optimal driving decisions, 
even if the joystick activation counts or driving durations 



are not absolutely minimal. As depicted earlier in the 
simplified grid example, optimal paths may be altered 
significantly based on a driver’s tendencies. Perhaps a 
driver, caregiver, or clinician has noticed that the driver 
frequently pulls to the left accidentally. Such a driver might 
instinctively stay farther from the left wall and/or make 
extremely wide left turns, but these inefficiencies may 
actually be desirable. 

Our MDP quantification method provides awareness of 
situational context (i.e., reward function via the Kinect data) 
and individual differences (i.e., transition model). In this 
study, we used a simulated transition model as a 
demonstration of the method. In future work, we plan to 
empirically estimate the transition model of each driver’s 
joystick control, allowing the MDP to compute 
individualized optimal policies as a reference to evaluate 
each driver’s performance. 
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